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ABSTRACT

This paper concerns experimental investigations of nonlinear viscosity of subgrade soils under

vehicle-induced loading. Subgrade soil samples collected—from the Soil/Aggregate Laboratory

at the Maryland State Highway Administration, Maryland Department of Transportation—were

used to conduct triaxial shear tests under repeated loading that is designed to simulate the cyclic

stress induced by vehicles.  Investigations in this paper have included two aspects.  First, a

nonlinear viscous model is introduced to describe the relation of shear stress and strain rate.  This

relation is reduced from the constitutive law of nonlinear poroviscosity suggested by Li (1994,

1999a, 1999b) and Li and Helm (1995, 1998).  Second, to model the viscous behavior of soil

under cyclic loading, constitutive parameters were investigated and calibrated through

experimental results from triaxial shear tests.  In this paper, viscous parameters were assumed to

be a function of the deviatoric strain and loading repetitions.  Viscous behavior of soils changing

with deviatoric strain and cyclic loading repetition were studied.
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INTRODUCTION

The top priority for improving the nation's highway system is to focus on quality and

performance of the roadway pavement.  Both quality and performance of pavement will largely

depend on the mechanical behavior of subgrade soils, especially the viscous response of subgrade

soil under dynamic vehicle-induced loading.  However, little effort has been made in

investigating soil viscous behavior in both the laboratory and the field.  In most numerical and

computer modeling investigations, parameters related to soil viscous behavior are traditionally

empirical.  For example, computer modeling with the Finite Element Method is one of the most

popular numerical methods currently used in computation of dynamic responses of pavement and

subgrade under cyclic loading.  In numerical modeling with the Finite Element Method, an extra

viscous term, however, is simply added to the governing equation.  It is assumed that material

viscosity associates with the rigidity (or elastic modulus) of the material (Zienkiewicz, 1977). 

Similar approaches are used in other techniques of dynamic analysis. Therefore, former models

are initially assumed as elastic ones and are then modified to the viscous-elastic models by

adding an extra viscous term that empirically associates with material elasticity.  A new

constitutive law proposed in this research program does not need to apply the traditional ad hoc

terms to modeling dynamic response of road subgrade (Li and Helm, 1997).  The viscous stress-

strain rate relation demonstrates elasto-viscous features when this new model is invoked and

applied to the governing equation developed from the first principles of continuum mechanics. 

Verification of this constitutive law is conducted with laboratory investigations using the soil

dynamic triaxial apparatus.  Investigation of dynamic behavior of subgrade soil includes dynamic

strength and failure, viscous stress-strain-time relation, creeping and fatigue due to repeated

loading, and dynamic shear level at a low confining pressure.  Such research is essential to

enhance our understanding of the viscous behavior of subgrade soils under dynamic conditions

due to traffic and nontraffic- induced loads.

In the present research, experimental investigations of nonlinear viscous behavior of subgrade soil

under vehicle-induced loading are featured.  The current research is the second phase of the

research program funded by the National Transportation Center (NTC) at Morgan State University
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through the 1998 Faculty Summer Research Grants.  The first phase of this program emphasized

laboratory studies in nonlinear elastic behavior of subgrade soils (Li, 1999a). The new nonlinear

elastic modulus was assumed to be a function of repetition of loading and recoverable strain. 

Current research (i.e., the second phase of the research) will center on dynamic viscous responses of

pavement subgrade.  Viscous responses of subgrade soil under cyclic shearing play a central role in

the performance of road surface, especially for dynamics such as cyclic stress induced by the

vehicles.  A new constitutive model is introduced in this investigation.  This new relation of stress

and strain rate assumes that the subgrade soil behaves as nonlinear poroviscous material (Li, 1994,

1999c) rather than the poroelastic material (Li, 1999a, 1999b).  Thus, subgrade soil is assumed to

behave as non-Newtonian flow.  When the constitutive relation is combined with the first

principles—such as conservation of momentum, mass, and energy—a governing equation is

developed (Li and Helm, 1995).  The complete mathematical description is a very powerful tool to

describe elasto-viscous behavior of subgrade soil under both traffic and nontraffic-induced loads (Li

and Helm, 1998).  Investigation of the proposed research program includes dynamic strength and

failure at a higher shear stress level and a lower confining pressure, shear viscosity, different time-

dependent relations among stress σ, strain ε, and strain rate during loading and unloading, such as

εεσ �−−− t , σ=− t −=ε, µ=− t −=ε, Mr –=t −=ε. Constitutive parameters are to be investigated with the

dynamic triaxial apparatus especially designed for testing subgrade and are calibrated from

laboratory results of soil dynamic experiments.  The possible correlation between nonlinear

viscosity and elasticity has also been studied.



3

VISCOUS CONSTITUTIVE RELATIONSHIP

Relation of Viscous Stress and Strain Rate

If the relation of stress and strain rate for subgrade soil is assumed to be viscous, according to the

theory of viscosity (Malvern, 1969), then the following expression results:

εDσ �= ,  (1)

where σσσσ====and εεεε represent viscous stress and strain tensors that are the symmetric second-order

tensors.  The dot denotes the derivative with respective to time.  The term D is a fourth-order tensor

of viscosity for the constitutive law and can be defined as a function of stress, strain, rate of strain,

time, space, and temperature for cases of physical nonlinearity.  From the symmetry of the viscous

stress and strain tensors and with an assumption of isotropic soil material, D, a fourth-order tensor

in Equation 1, can be written as:

)(3/2( δδδδ)δδD ++−= µµk , (2)

where δδδδ====is the Kronecker delta, and κ and µ are the bulk and shear viscous parameters,

respectively.  It is known that, for subgrade soils, the stress-strain relation is normally not linear. 

This fact might suggest the relation between the viscous stress and strain rate might not be linear.

Therefore, viscous parameters κ and µ in Equation 2 are not constant.  Alternatively, Equation 1

can be written in the following two parts (Malvern, 1969):

DD 23/ εδεσσδσ �� µκ +=+= trtr , (3)

where the superscript D denotes a deviatoric variable, and tr denotes the trace of the stress tenor.

The term trσσσσ/3, where in Equation 3 it is the spherical or mean stress that is associated with volume

strain rate dεεεε/dt in a form (k = 1, 2, and 3) (Malvern, 1969):
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 εσ �tr3/tr κ= . (4a)

σσσσD is the second-order tensor of deviatoric or shear stress that is related to deviatoric strain rate

tensor dεεεεD/dt by:

    Dεµ �2D =σ (4b)

For further investigations, Equations 4a and 4b are written in terms of invariants of stress and strain

as follows (Malvern, 1969):

    11 3 JI �κ= , (5a)

  DD JI 22 2 �µ= , (5b)

where I1 (= trσσσσ) and I2
D (= σσσσDσσσσD/2) are invariants of the first spherical stress and the second

deviatoric stress individually (Malvern, 1969).  The terms dJ1/dt (= dtrεεεε/dt) and dJ2
D/dt [=

(dεεεεD/dt)(dεεεεD/dt)/2] represent the first spherical and the second deviatoric strain tensor invariants.

The differential operator d/dt denotes the derivative with respect to time.

Stress and Strain in a Quasi–Three-dimensional Space

Normally, laboratory studies are conducted in a quasi-triaxial space.  The quasi-triaxial space is a

special case of true three-dimensional space.  For the quasi-triaxial case and in the principal stress

and strain spaces, there are principal stresses σ1 ≠=σ2 ===σ3 and principal strains ε3 ≠=ε2 ===ε3. Bearing

in mind the definitions of I1 = trσσσσ and I2
D = σσσσDσσσσD/2, then the stress-strain relations of Equations 5a

and 5b are, respectively, reduced to:

)2(3)2( 3131 εεκσσ �� +=+ , (6a)

)(2)( 3131 εεµσσ �� −=− . (6b)

Equations 6a and 6b are relations of volume stress and shear stress versus volume and shear

strain rate in a quasi-triaxial system.  Since the bulk modulus κ is related the first stress
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invariance, and confining stress of subgrade soils in situ is low, in this paper, Equation 6b is the

main concern.  Namely, the investigation of the relation between deviatoric stress σd(=

σ1=−=σ3)=and deviatoric strain rate 31 εεε ��� −=d  is emphasized.   The relation 31 εεε ��� −=d  needs to

be simplified further for testing conditions in the laboratory. Either a negligible 3ε�  is assumed or

a relation between 31 εε �� and  is assumed, for instance, associated by a constant (Li, 1999a).   In

most cases, the relation 6a can be evaluated by investigating the correlation between shear

viscosity µ and volume viscosity κ.== Such a relation of σd = 2µ(dεd/dt) can be conveniently

applied to a quasi-triaxial apparatus. Since the viscosity is an important input parameter in

highway pavement design and numerical modeling, the discussion of shear viscosity is

emphasized in the later sections.

Nonlinear Viscous Parameters µµµµ and κκκκ

In this investigation, to consider viscous nonlinearity between viscous shear stress and shear

strain rate, volume viscosity κ=and shear viscosity µ=are assumed to be functions of the stress and

strain invariances (I and J) and the number of the repetition N, namely κ===κ(I1, N, J1) and µ =

µ(I1, N, J2
D).  The variable N is the number of repetitions for cyclic loading. If it is further

assumed that the variables in the viscous parameters κ and µ=can be independent from each other

and are able to be expressed by the product of three independent functions, then κ(I1, N, J1) and

µ(I1, N, J2
D) are  given by:

)()()( 12110 JNI κκκκ = , (7a)

)()()( 22110
DJNI µµµµ = . (7b)

The three independent functions in Equations 7a and 7b indicate that the effects of these three

variables on volume and shear viscosity κ and µ can be decoupled.  The three functions do not

affect each other, although volume and shear viscosity are functions of three variables.  This

assumption will be further discussed with experimental results that are shown later in the

“Experimental Investigations in the Laboratory” section.
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Keeping the assumption for Equations 7a and 7b in mind and further assume the nonlinear

viscous parameters κ and µ to be power functions of I, J, and N, one has:

321 )()( 110
aaa JNIa=κ (8a)

321 )()( 210
bDbb JNIb=µ , (8b)

where ai (i = 0, …, 3) and bi (i = 0, … 3) are constants that can be calibrated from test results. N is

the repetition of cyclic loading.  Note that, in Equations 8a and 8b, I1 is defined as initial mean

confining pressure and is nondimensional and normalized by the unit atmosphere pressure (0.1

MPa).  For convenience, the same notation is used later everywhere in this paper. If Equation 8 is

compared with Equation 7, it is not difficult to find κ�0===a0Ι(I1)a1, κ1=== a0ΝΝ=

a2, and κ1== a0J(J1)a3;

and µ0===b0Ι(I1)b1, µ1===b0ΝΝ=

b2, and µ1== b0J(J2
D)b3, where a0 = a0Ι=a0Νa0J =and=b0 = b0Ι=b0Νb0J.    Again, in

the quasi–three-dimensional space, the first stress invariance, the first strain invariance and the

second deviatoric strain invariance become I1 = (σ1 +=2σ3), J1= (ε1 +=2ε3), and J2
D = 2(ε1 –=ε3).

Accordingly, Equations 8a and 8b reduce to:

321 )2()2( 31310
aaa Na εεσσκ ++= (9a)

321 )()2( 311310
bbb Nb εεσσµ −+= . (9b)

Although the same notation b0 is used in Equations 9b and 8b, b0 in Equation 9b equals 8b3 times

b0 in Equation 8b because of J2
D = 2(ε1 – =ε3).  If the term b0 is not specified, then the notation b0

in Equation 9b is to be adopted in later discussions through this report. In the present

investigations, Equation 9b is emphasized and verified through laboratory experiments. Further

investigations are to calibrate constitutive parameters (i.e., b0, b1, b2, and b3) from test results.
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Governing Equation with the Constitutive Relation

If the first principles such as conservation of momentum, mass, and energy, are invoked, a

governing equation can be developed. The governing equation for soil particle deformation with

consideration of viscous drag force due to pore water flow is given as (Li, 1994; Li and Helm,

1995, 1998):

RuDLcuu =++ )(21 ���� ∇∇∇∇c ,            (10)

where two dots indicate the second derivative with respect to time, L is a matrix for definition of

strain, and u is the displacement field of the solid phase. The right-hand side vector R is defined

by:

5
bb

43 ccc +++= qqbR � ,  (11)

where coefficients ci(i = 1, ..., 5) are coefficients of the governing Equation 6. The vectors b and

qb denote the body force and the bulk flux [qb ≡=nvw
 + (1 – n)vs]. The divergence of qb can be

further reduced to zero by invoking the incompressibility conditions of solid grain and pore fluid

(i.e., the second and third terms on the right-hand side of Equation 11 become zero due to ∇∇∇∇ qb =

0).  The nonlinear viscous relation is introduced to the governing equation (the third terms on the

left- hand side of Equation 10).  Applying the definition given in Equation 8, one can find the

alternative form:

 Rcuu uLDLuD
2

=++ +[ )]()(
1

����� ∇∇∇∇∇∇∇∇c  , (12)

where the third and fourth terms equal

)]()()( uLDLuDuDL ��� ∇∇∇∇∇∇∇∇∇∇∇∇ +[= , (13)
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in which the first term is equivalent to the traditional elastic term, and the second term is similar

to the viscous term in the elastic-viscous model.  Equations 1, 2, and 8 were derived by Li (1994)

and Li and Helm (1995, 1998).  One may note that the coefficient of the third term on the right-

hand side of Equation 12 plays an equivalent role as Young’s modulus in the elastic model and

theory. From Equation 13, it is suggested that the viscous matrix D is associated with the

“apparent Young’s modulus” by taking the derivative of D with respect to time.  The last term on

the right-hand side of Equation 12 is the typical viscous term.  Equation 12 is a powerful tool to

analyze dynamic response of subgrade soil under traffic loading.  With the technology of

numerical analysis, such as the Finite Element Method or the Boundary Element Method, the

governing Equation 12 can be applied to engineering and solve problems with specific boundary

conditions. The third and the fourth terms in Equation 12 are, however, not ad hoc but are

derived from the constitutive relation related to Equations 1, 2, and 8.  This fact will set the

governing Equation 13 with a nonlinear viscous model from the traditional viscous-elastic

model. The further investigation will verify the relation in Equation 13 between deviatoric

components.
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EXPERIMENTAL INVESTIGATIONS IN THE LABORATORY

Samples Preparation and Basic Properties

Subgrade soil samples are received from the Soil/Aggregate Laboratory at the Geotechnical

Exploration Division at the Maryland State Highway Administration, Maryland Department of

Transportation. These subgrade soil samples were originally collected from two sites in Howard

County, Maryland. The main physical properties of the samples from two sites are listed in Table

1a.  Sample preparation for testing the resilient modulus follows the code of AASHTO T292-91.

Equipment and Test Conditions

Experimental investigations have been conducted at the Geotechnical Laboratory at the

Department of Civil Engineering, School of Engineering, Morgan State University.  Samples were

tested with the triaxial apparatus (RMT HX1000) that is specially designed for testing the

subgrade soil under cyclic loading by the Structure Behavior Laboratory Equipment, Inc.

Samples were first subjected to a conditioning period with zero confining pressure. Then, the

samples were subjected to dynamic loading with the undrained condition (UU conditions). The

magnitude of the repeated loading increases with a constant number of repetitions in each

sequence.  More information on the testing conditions is listed in Table 1b.

Test Results and Parameter Calibration

After samples have been tested, acquired test data are retrieved from the computer, analyzed, and

plotted in several sets of family curves, among which the following relations are characterized.

Relation of stress over strain rate versus strain ( dd εεσ −�/ )

The nonlinear relation of deviatoric stress over strain versus deviatoric strain ( dd εεσ −�/ ) is

given in Figures 1a and 1c for two groups of samples. In Figures 1a and 1c, each curve of the

stress over strain rate (i.e., viscosity) decreases with an increase of the deviatoric strain.

Simultaneously, each curve decreases with an increase of repetition N.  Applying the technology
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of curve fitting to the data curves in Figures 1a and 1c, finds that  the trend curves (the dashed

lines in the figures) follow a pattern of the power function [i.e., f(x) = axb]. The calibrated

parameters (i.e., b0, b2, and b3) are listed in Tables 2a and 2b.  Details of calibration to obtain the

constitutive parameters will be discussed in the “Discussion and Analysis of Results” section.

Since the confining pressure used in the investigation equals the unit atmosphere, the normalized

first stress invariance I1 = 1.0 (i.e., in this paper, the first stress invariance is normalized by the

unit atmosphere that equals 0.1 MPa), and b0 equals the product of b0N and b0J. The relation of

the parameter versus N is illustrated in Figures 1b and 1d.

Relation of stress over strain versus strain ( ddd εεσ −/ )

The nonlinear relation of deviatoric stress versus recoverable strain rate is illustrated in Figures

2a and 2c, in which each curve of stress versus strain rate also changes with the repetition N of

periodic loading.  If compared with the relation of stress over strain rate versus strain shown in

Figures 1a and 1c, the curve of stress over strain versus strain ( ddd εεσ −/ ) has the same pattern

as Figures 1a and 1c. Namely, stress over strain versus strain ( ddd εεσ −/ ) decreases nonlinearly

with an increase of deviatoric strain.  At the same time, for a value of strain, deviatoric stress

over strain decreases with an increase of repetition N.  Similarly, the method of curve fitting for

the power function is used to find the parameters.  A set of calibrated parameters (i.e., k0, k2, and

k3) is listed in Tables 3a and 3b.  The stress over strain versus strain ( ddd εεσ −/ ) is equivalent

to the resilient modulus versus strain ( drM ε− ) if elastic theory is applied as Li (1999a)

suggests.

Relation of Stress Versus Strain ( dd εσ − )

The nonlinear relation of deviatoric stress versus recoverable strain depicted in Figures 3a and

3c, in which each stress-strain curve changes with the number of periodic loading N and

deviatoric strain.  From Figures 3a and 3c, deviatoric stress increases nonlinearly with an

increase of deviatoric strain, whereas for a given value of deviatoric strain, deviatoric stress

declines with an increase of the loading repetition N. Although the curves ( dd εσ − ) are different



11

from the two groups ddd εεσ −�/  and ddd εεσ −/  previously discussed, the trend curves still

follow the pattern of the power function. With the curve-fitting method, parameters (i.e., n0, n2,

and n3) are calibrated and listed in Tables 4a and 4b. 
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DISCUSSION AND ANALYSIS OF RESULTS

From the previous section, test data from experimental investigation are demonstrated in Figures

1 through 3, and the parameters are calibrated and listed in Tables 2 through 4.  The following

discussion is based on results from experimental investigations.

Stress Over Strain Rate as a Function of N and εεεεd

Recalling the relation given by Equation 4b, viscous stress over strain rate versus N and εd

(i.e., ddd N εεσ −−�/ ) is the relation of viscosity µ changing as a function of N and εd [i.e.,

µ(Ν,=εd) or µ=− N – εd].  Assuming the test condition f(I1) = b0I(I1)b1 = 1.0 and invoking Equation

6b, one finds that the shear viscous stress has the following nonlinear relation with the strain rate

in the quasi-triaxial space:

  )(2),(2/ 32
0

b
d

b
ddd NbN εεµεσ ==� , (14)

where µ in Equation 14 equals:
32

0),( b
d

b
d NbN εεµ = , (15)

in which the terms b0, b2, and b3 are constitutive parameters; b0 has a dimension of kPa-second;

and b2 and b3 are dimensionless.  For simplicity, b0 is assumed to be a constant in this paper;

although, in a more general case, b0 can be a function of N and confining pressure. With

Equation 7b, the functions of µ1(N) and µ2(JD
2) have been introduced as the following two forms:

2
02 )( b

Ni NbN =µ , (16a)

3

03 )( b

dJd b εεµ = ,           (16b)

As described previously, parameters b0, b2, and b3 can be calibrated from experimental results.

The procedure of calibration for constitutive parameters involves two steps. The first step is to

find b3 and b0Nb2 from each curve. The calibrated parameter b3 is listed in Tables 2a and 2c in
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which R2 is given the regression of test data (for a perfect match of trend curve, R2 = 1.0). The

second step is to find b2 and b3 using the set of data b0Ni b2 and Ni in Tables 2a and 2b. The

calibrated parameters b0 and b2 are given in Table 2b for six samples from two groups.  To

analyze the test results without considering the effect of repetitions, the deviatoric stress σd can be

divided by f1(N) [i.e., σd /Nb2 ].  From this, the relation=σd/Nb2 against εd is drawn (Li, 1999a).  For a

special case of a negligibly small b2, there is no effect of the loading repetition N on the relation

of stress versus strain rate.  Moreover, for a special case of negligibly small coefficients b2 and b3

 (i.e., both b2 ≈ 0 and b3 ≈=0), the relation described in Equation 15 becomes constant; and

Equation 14 reduces to the relation of linear viscosity. Thus, the nonlinear relation Equation 14

reduces to a linear one: dd b εσ �0= . From Figures 1 and 2, one can observe how parameters b2

and b3 affect the curves dd N εεσ −−�/ .   The expressions based on the calibrated parameters

are given below:

Group DJ0: 23.043.016706/ −−= ddd N εεσ �  (kPa) (17a)

Group DJ50:  55.034.02172/ −−= ddd N εεσ �    (kPa). (17b)

From Equations 17a and 17b, it is clear that viscosity of subgrade soils from the two groups

decreases dramatically when subgrade soils undergo a long period shear force and large

deformation.

Stress Over Strain as a Function of N and εεεεd

An interesting topic to discuss is the relation of stress over strain as a function of N and εd (i.e.,

ddd N εεσ −−/ ). Previous investigations, with emphasis on nonlinear elasticity, were conducted

by Li (1999b).   As described previously in the early discussion of this research report (see

Equation 13), effort to investigate the correlation of viscosity and elasticity will be made in this

section.  Namely, the relation of stress over strain as a function N and εd in Figures 2a and 2c, as

well as its correlation with viscosity µ versus strain in Figures 1a and 1c, are discussed.  The

relation of stress over strain versus strain inherently is the relation resilient modulus Mr versus

strain (i.e., dr NM ε−− ), if one applies the elastic theory.
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From Figures 2a and 2c, deviatoric cyclic stress over deviatoric strain (i.e., σd/εd) has a nonlinear

relation.  Second, physical nonlinearity of σd/εd is a function of N and εd.  The ratio of σd/εd

decreases when both the repetition N and strain εd increase, which means the ratio σd/εd is

softened with an increase of N and strain εd.  If one similarly assumes the nonlinearity relation

given by Li (1999a, 1999b) leads to the following expression for ddd N εεσ −−/ :

32
0/ k

d
k

dd Nk εεσ = . (18)

The calibrated coefficients of k0, k2, and k3 are calibrated and listed in Tables 3a and 3b. The same

tow steps used to calibrate the parameters bi (i = 0, 2, 3) are applied herein.  Equation 18 clearly

states that the ratio σd/εd changes with loading repetition N and deviatoric strain εd.  When

constitutive parameters k2 and k3 are both less than zero, σd/εd decreases with N and εd;

otherwise, σd/εd increases.   Since the value of k3 does not change very much (see Table 3a), if the

average value of k3 is taken from each group, the ratio σd/εd versus εd for the two groups is given

as follows:

Group DJ0: 23.038.059092/ −−= ddd N εεσ      (kPa) (19a)

Group DJ50: 49.034.09087/ −−= ddd N εεσ        (kPa). (19b)

The above expressions show the characteristics of physical nonlinearity associated with the power

function that is changing with variables N and εd.  Compared with the nonlinear elastic case

investigated by Li (1999a), Equations 19a and 19b state that the resilient modulus declines with an

increase of loading time and large deformation due to the structural damages of the subgrade

material.

Shear Stress as a Function of N and εεεεd

Figures 3a through 3d demonstrate the relation of stress-strain.  Changes in stress similarly

follow the pattern of the power function.  From these results, it is evident that parameter n3

controls the nonlinearity of stress-strain relation as soil skeletal deforms, whereas the parameter
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n2 dominates the nonlinear effect due to the cyclic shearing effect.  The following two expressions

are based on test data and calibrated parameters listed in Tables 4a and 4b:

Group DJ0: 75.038.059092 dd N εσ −=   (kPa) (20a)

Group DJ50: 51.034.09087 dd N εσ −=     (kPa). (20b)

Comparing Equation 19 to Equation 20, it is evident that calibrated parameters n2 and n3 match

the calculated values (n2 = k2 + 1 = 0.77 and n3 = k3 + 1 = 0.51) well for the two groups.  The

larger absolute values of n2 (or b2) show higher structural sensitivity under cyclic loading.

Correlation of Stress Over Strain ( dεσ / ) and Stress Over Strain Rate ( dεσ �/ )

As described previously, the general nonlinear viscous model is shown in Equation 12, in which

the equivalent effect of elasto-viscous behavior has also been illustrated.   In Equation 13, the

correlation between D and D dot (D dot is the time derivative of D) can be mathematically

derived by taking the time derivative from the suggested constitutive law.  For instance, taking

the time derivative of shear viscosity leads to the following relation

)()()( 21
DJINN µµµµ ��� = .  (21a)

Recalling the simplified form of Equation 8b with the assumptions of no effect of stress

invariance I1 in a quasi-triaxial space allows Equation 21a to be written as:

µεµ NTNNTb b
d

b /)/( 32
0 ==� , (21b)

where N = t/T, and T is the period of cyclic loading.  At the same time, Equation 21 can be

associated with Equation 8 by a function C(N, εd) by the following relation:

3232
00 ),()/( k

d
k

d
b
d

b NkNCNNTb εεε = (22)

or

 3322)/(),( 00
kb

d
kb

d NNkTbNC −−= εε (23)
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From Tables 2 through 4, differences of parameters (i.e., b2 – k2 and b3 – k3) are significantly

small.  Equation 23, therefore, can be further simplified to:

)/(),( 00 NkTbNC d =ε . (24)

From Equation 22, if the function C(N, εd) in Equation 24 is a constant (i.e., b0T/k0N = constant),

then shear viscosity is proportional to elastic shear modulus.  Equation 24 suggests that, if the

function C(N, εd) becomes a constant, the parameters b0 and k0 are required to be a function of N

to keep the ratio (i.e., b0T/k0N) in Equation 24 as a constant.  This is an interesting topic and is

recommended for future research. 

Two groups of samples (DJ0 and DJ50) were tested, respectively, under two different confining

pressures (i.e., confining pressure = 0.0 and 50 kPa). Note the difference in the relation of stress-

N-strain relation from Figures 1 to 3.  The effect of confining pressure at the low level is not

significant.

Applications of the Results from the Experimental Investigations

The three relations presented in the previous discussion are: ddd N εεσ −−�/  , ddd N εεσ −−/ ,

and dd N εσ −− , which are shown as a power function of N and strain εd.  It is significant in the

roadbed design to consider factors of nonlinearity related to the loading repetition and deviatoric

strain.  Before applying the above relations to the design of roadbed, investigate the loading

characteristics related to the pattern of traffic flow.  For example, study the response spectrum of

dynamic loading induced within roadbed by vehicles.  The traffic-induced loading may be

associated with a certain pattern of traffic flow.  Second, by applying a similar method adopted in

earthquake engineering (e.g., the equivalent energy method) to the vehicle-induced load-time

history curve, the random loading curve can be converted into a uniform and periodic loading

sequence like that used in the laboratory.  The detailed procedure of the conversion will not be
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discussed in herein because it is out of the scope of this paper.   Once the equivalent loading

sequence has been identified, the viscosity can be found using Equation 17, combined with

deformation at the point of failure.  One can find the resilient modulus invoking Equation 19 if

the nonlinear elastic theory is introduced.

  



18

SUMMARY AND CONCLUSIONS

Based on results discussed in this paper, the following conclusions are drawn:

1. A new nonlinear viscous model has been introduced in this paper. This is the first attempt to

introduce a nonlinear viscous model for the investigations of subgrade soils under cyclic

loading. The relationship between shear stress and shear strain rate is emphasized.  In this

model, the nonlinearity of shear viscosity is associated with deviatoric strain and repetition of

cyclic loading.  Since the introduced model can be considered as a time-dependent model, it is a

powerful tool to predict the performance of subgrade soil with consideration of dynamic effect

related to time, such as fatigue and creeping.  A simplified case in a quasi-triaxial space has

been discussed for convenience of further experimental investigations.

2. In this model, shear viscosity is our main concern.  There are three constitutive parameters for

shear viscosity (b0, b2, and b3) that are calibrated in a pattern of the power function with test

results from triaxial shear tests in Figures 1a through 1d.  The parameters b1 and b3, respectively,

carry information of the viscous nonlinearity related to soil deformation and structural damage.

When constitutive parameters b2 and b3 are negligibly small, the nonlinear viscous model

reduces to a linear model. Test results are based on two groups of subgrade samples collected

from different sites.

3. Three sets of nonlinear relations are characterized from two groups of samples, namely stress

over strain rate versus strain rate ( ddd N εεσ −−�/ ), stress over strain versus strain

( ddd N εεσ −−/ ), and stress versus strain ( dd N εσ −− ).  The related parameters (e.g., bi, ki

and ni, where i = 0, 2, and 3) are calibrated and listed in Tables 2 through 4.  Test data and trend

curves are plotted in Figures 1 through 3. A new expression of shear viscosity is essential in this

research.  The shear viscosity µ is introduced as a function of recoverable strain and the number

of repetitions.  Such an expression [i.e., µ== µ(Ν,=εd)] provides a powerful tool for analysis of

viscous behavior and dynamic response in pavement design, especially when information

concerning deformation and repetitions is known.  Furthermore, due to the feature of the

relation as a function of stress, strain, strain rate, and time, there are opportunities for further
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research in rheological characteristics, such as failure due to fatigue and creeping within

subgrade layers.

4. Correlation between nonlinear shear viscosity and elastic modulus is discussed.   Shear

viscosity and shear modulus are both functions of deviatoric strain and repletion N and change

with N and εd with the same pattern.  Both decrease with N and εd with a power function.  For

the relation of stress versus strain, stress also decreases with an increase of the repetition N, but

stress increases with increase of strain in a power function. A function C(N, εd) is introduced to

link the nonlinear viscosity and modulus.  In this investigation, it is found that, when C(N, εd)

becomes a constant, shear viscosity is proportional to the elastic modulus.

5. It should be pointed out that the research results from this investigation not only can be applied

to designs of pavement roadbed, but also can be used in other highway system projects.  For

example, the nonlinear behavior of soil plays a role in bridge foundations or slopes in highway

systems.

In brief, enhancing our understanding of viscous behavior and dynamic response of subgrade soils

is essential and important in highway design.  The findings from this research will apply to and

improve the design in a highway system; and in the long run, it will also benefit the performance of

infrastructures in terms of longer life and lower cost of maintenance.
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NOMENCLATURE

ai bulk viscous constitutive parameters  (i = 0, 1, 2, and 3)

bi shear viscous constitutive parameters  (i = 0, 1, 2, and 3)

b body force vector, kg/m2 - sec2

ci parameters in the governing equation (i = 1, 2, 3, 4, and 5)

D a fourth-order tensor of viscosity, kg/m-sec

I1 the first invariance of stress, kg/m-sec2

J2
D the second deviatoric invariance of train

ki constitutive parameters  (i = 0, 1, 2, and 3)

L a matrix to convert displacement into strain tensor, 1/m

n porosity

ni constitutive parameters  (i = 0, 1, 2, and 3)

Mr resilient modulus, kg/m-sec2

N the number of repetitions

qb the bulk flux, m/sec

R the vector in the governing equation, kg/m2-sec2

t time, sec

u displacement, m

vs, vw average phase velocities of the solid matrix and water, m/sec

vr relative velocity between the solid and fluid phases (vw – vs), m/sec

δδδδ the Kronecker delta

εεεεI                      the principal strain (i = 1, 2, and 3)

εd deviatoric strain

εεεε structural infinitesimal strain tensor

εεεεD deviatoric infinitesimal strain tensor

trεεεε trace of structural infinitesimal strain tensor
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γw= unit weight of water,=kg/m2-sec2

κ, µ nonlinear bulk and shear viscosity parameters, kg/m-sec  

ρs phase densities of individual solid grains, kg/m
3

σσσσd deviatoric stress, kg/m-sec
2

σσσσi the principal stress (I = 1, 2, and 3), kg/m-sec
2

σσσσ the structural stress tensor, kg/m-sec
2

σσσσD the deviatoric stress tensor, kg/m-sec
2

trσσσσ the trace of stress structural tensor, kg/m-sec
2

d/dt total derivative with respect to time t, 1/sec

∇ derivative operator for gradient, divergence, and curl, 1/m

∂/∂t                 partial derivative with respect to time, 1/sec

. dot for time derivative

superscripts

D deviatoric

r relative

s solid

w water

. dot for time derivative

subscripts

d deviatoric

s solid

w water

0 initial state at time t = 0
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Table 1a Physical Properties of Subgrade Samples

Sample
Name

Optimum
Water
Content (%)

=======

==============

=======γγγγsoil wet
(10-3  kN/m3)

Plastic Limit
(%)

Liquid Limit
(%)

Classification
(AASHTO)

DJ-1 14.0 16.66 5.0 30.0 A4

DJ-2 14.0 16.66 5.0 30.0 A4

DJ-3 14.0 16.66 5.0 30.0 A4

DJ-4 14.0 16.66 5.0 30.0 A4

DJ-5 14.0 16.66 5.0 30.0 A4

DJ-6 14.0 16.66 5.0 30.0 A4
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Table 1b Test Conditions

Sample
No.

Cycles No.
in
Sequence

Load
Time
(s)

Cycle
Time
(s)

Sitting
Load   
(kPa)

Confining
Pressure
(kPa)

Loading
Wave Type

DJ-1 50 0.25 1.0 10.0 0.0 Havesine

DJ-2 200 0.25 1.0 10.0 0.0 Havesine

DJ-3 500 0.25 1.0 10.0 0.0 Havesine

DJ-4 10 0.25 1.0 10.0 50.0 Havesine

DJ-5 50 0.25 1.0 10.0 50.0 Havesine

DJ-6 500 0.25 1.0 10.0 50.0 Havesine
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Table 2a Calibration of Parameters b0, b2, and b3

Sample No. b0 f(N) (kPa) b3 Ni R2

DJ-1 3321 -0.20 50 0.944

DJ-2 1460 -0.24 200 0.967

DJ-3 1277 -0.26 500 0.997

DJ-4 898 -0.46 10 0.97

DJ-5 692 -0.48 50 0.99

DJ-6 247 -0.55 500 0.99
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Table 2b Calibration of Parameters b0, b2, and b3

Sample No. f(N) b0 (kPa) b2 R2 Confining
Pressure

(kPa)
DJ0 b0 N

b2 16706 –0.43 0.999 0.0

DJ50 b0 N
b2 2172 –0.34 0.950 50.0
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Table 3a Calibration of Parameters k0, k2, and k3

Sample No. k0Nk2 (kPa) k3 Ni R2

DJ-1 13282 –0.20 50 0.94

DJ-2 7616 –0.24 200 0.97

DJ-3 5514 –0.26 500 0.99

DJ-4 3595 –0.46 10 0.97

DJ-5 3051 –0.47 50 0.99

DJ-6 989 –0.55 500 0.99
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Table 3b Calibration of Parameters k0, k2, and k3

Sample No. f(N) k0 (kPa) k2 R2 Confining
Pressure

(kPa)
DJ0 k0 N

k2 59092 –0.38 0.99 0.0

DJ50 k0 N
k2 9087 –0.34 0.91 50.0
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Table 4a Calibration of Parameters n0, n1, and n3

Sample No. n0 f(N) (kPa) n3 Ni R2

DJ-1 14517 0.86 50 0.997

DJ-2 7616 0.76 200 0.997

DJ-3 2424 0.62 500 0.990

DJ-4 2201 0.47 10 0.93

DJ-5 5069 0.60 50 0.97

DJ-6 990 0.46 500 0.99
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Table 4b Calibration of Parameters n0, n2, and n3

Sample No. f(N) n0(kPa) n2 R2 Confining
Pressure

(kPa)
DJ0 n0Nn2 17327 –0.004 0.99 0.0

DJ50 n0Nn2 5994 –0.24 0.33 50.0
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Figure 1a Stress over strain rate versus strain )/( ddd εεσ −�  for Group DJ0

Shear Viscosity  vs. Strain 
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Figure 1b Calibration of parameters (b0 and b2) for Group DJ0
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Figure 1c Stress over strain rate versus strain )/( ddd εεσ −�  for Group DJ50

Stress/Strain Rate vs. Strain
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Figure 1d Calibration of parameters (b0 and b2) for Group DJ50
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Figure 2a Stress over strain versus strain )/( ddd εεσ −  for Group DJ0

Stress/Strain vs. Strain
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Figure 2b Calibration of parameters (k0 and k2) for Group DJ0
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Calibration of k0 and k2
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Figure 2c Stress over strain versus strain )/( ddd εεσ −  for Group DJ50

Strain/Strain vs. Strain
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Figure 2d Calibration of parameters (k0 and k2) for Group DJ50

Calibration of k0 and k2
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Figure 3a Stress versus strain )( dd εσ −  for Group DJ0

 Stress vs. Strain
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 Figure 3b Calibration of parameters (n0 and n2) for Group DJ0

Calibration of n0 and n2
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Figure 3c Stress versus strain )( dd εσ − for Group DJ50

  

Strain vs. Stress
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Figure 3d Calibration of parameters (n0 and n2) for Group DJ50

Calibration of n0 and n2
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